Teacher: CORE Math 7	Year: 2015-16
	Month: All
Course: Math 7	Months

S 1. Tha Language of

Algebra

7.NS.A.1a-Apply and extend previous understandings of operations with fractions ~ Describe situations in which opposite quantities combine to make 0.

Opposites		
Negative	Quiz Integers	Subtractin Pre Algebra
integers	$1.4-1.8$	g Integers

7.NS.A.1b-Apply and extend previous understandings of operations with fractions ~ Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
7.NS.A.1c-Apply and extend previous understandings of operations with fractions ~ Understand subtraction of rational numbers as adding the additive inverse, p â€" $\mathrm{q}=$ $p+\left(\hat{a} €^{\prime \prime} q\right)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1d-Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A.1-Apply and extend previous understandings of operations with fractions ~ Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.A.1a-Apply and extend previous understandings of operations with fractions ~ Describe situations in which opposite quantities combine to make 0 .
7.NS.A.1b-Apply and extend previous understandings of operations with fractions ~ Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.

What is the	1.7 Multiplying	Multiply and relationship between powers and and Dividing	Negative divide integers.
Integers			

Positive integers

Absolute value
7.NS.A.1c-Apply and extend previous understandings of operations with fractions ~ Understand subtraction of rational numbers as adding the additive inverse, p â $€^{\prime \prime} \mathrm{q}=$ $p+\left(\hat{a} €{ }^{\prime \prime} q\right)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1d-Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to add and subtract rational numbers.

Multiplyin	Pre Algebra
g and	Glenco-Math
Dividing	Accelerated
Fractions	

7.NS.A.2-Apply and extend previous understandings of operations with fractions ~ Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. 7.NS.A.2a-Apply and extend previous understandings of operations with fractions ~ Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (â€"1)(â€"1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
7.NS.A.2b-Apply and extend previous understandings of operations with fractions ~ Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $\hat{a} €^{\prime \prime}(p / q)=\left(\hat{a} €^{\prime \prime} p\right) / q=$ $p /\left(a €^{\prime \prime} q\right)$. Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2c-Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to multiply and divide rational numbers.
7.NS.A.2d-Apply and extend previous understandings of operations with fractions ~ Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in Os or eventually repeats.

How do we solve equations algebracially?	2.5 Solving Equations Using Addition or Subtraction	Solve equations using addition or subtraction.	Inverse Operations
			Equivalent Equations
How do we solve equations algebracially?	2.6 Solving Equations Using Multiplication or Division	Solve equations using multiplication or division.	Inverse Operations

Solving an
Equation

Equivalent
Equations
7.EE.B.3-Solve real-life and mathematical problems using numerical and algebraic expressions and equations ~ Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
7.EE.B.4-Solve real-life and mathematical problems using numerical and algebraic expressions and equations ~ Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
7.EE.B.3-Solve real-life and mathematical problems using numerical and algebraic expressions and equations \sim Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
7.EE.B.4-Solve real-life and mathematical problems using numerical and algebraic expressions and equations ~ Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

How do we solve equations algebracially?	2.7 Decimal Operations and Equations with Decimals	Solve equations involving decimals.	Sum

7.EE.B.3-Solve real-life and mathematical problems using numerical and algebraic expressions and equations \sim Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
7.EE.B.4-Solve real-life and mathematical problems using numerical and algebraic expressions and equations ~ Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
7.EE.B.4a-Solve real-life and mathematical problems using numerical and algebraic expressions and equations \sim Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.
7.EE.A.1-Use properties of operations to generate equivalent expressions \sim Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE.A.2-Use properties of operations to generate equivalent expressions ~ Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.
$\left.\begin{array}{lllll}\begin{array}{l}\text { How do we solve } \\ \text { equations } \\ \text { algebracially? }\end{array} & \begin{array}{l}\text { 2.3 Simplifying } \\ \text { Variable } \\ \text { Expressions }\end{array} & \begin{array}{l}\text { Simplify variable } \\ \text { expressions. }\end{array} & \text { Distribute } & \\ & & \text { Simplify }\end{array}\right]$
7.EE.B.4a-Solve real-life and mathematical problems using numerical and algebraic expressions and equations \sim Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.
7.EE.A.1-Use properties of operations to generate equivalent expressions ~ Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE.A.2-Use properties of operations to generate equivalent expressions ~ Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.
7.EE.B.4b-Solve real-life and mathematical problems using numerical and algebraic expressions and equations \sim Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.

N 5. Rational Numbers
and Equations

		Knowledge and	
Essential Questions	Content	Skills	Vocabulary
\checkmark How do we work with	5.1 Rational	Write fractions as Rational Number	
fractions?	Numbers	decimals and decimals as	
		fractions.	

7.NS.A.1-Apply and extend previous understandings of operations with fractions ~ Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.A.1a-Apply and extend previous understandings of operations with fractions ~ Describe situations in which opposite quantities combine to make 0.

```
e
r
How do we work with 5.2 Adding and Add and subtract Numerator
fractions? Subtracting Like like fractions.
Fractions
```


Order

```
Numerator fractions?
```

Subtracting Like like fractions. Fractions

Repeating
Decimal
7.NS.A.2b-Apply and extend previous understandings of operations with fractions ~ Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $\hat{a} €^{\prime \prime}(p / q)=\left(\hat{a} €^{\prime \prime} p\right) / q=$ $p /\left(a ̂ €^{\prime \prime} q\right)$. Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2d-Apply and extend previous understandings of operations with fractions ~ Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in Os or eventually repeats.
7.NS.A.1b-Apply and extend previous understandings of operations with fractions ~ Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
7.NS.A.1c-Apply and extend previous understandings of operations with fractions ~ Understand subtraction of rational numbers as adding the additive inverse, $\mathrm{p} \hat{\mathrm{a} \not \mathrm{E}^{\prime \prime} \mathrm{q}=}$ $p+(a ̂ € " q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1d-Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A.3-Apply and extend previous understandings of operations with fractions ~ Solve real-world and mathematical problems involving the four operations with rational numbers.

Like Fractions
Mixed Number
Improper
Fraction

7.NS.A.1b-Apply and extend previous understandings of operations with fractions \sim Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
7.NS.A.1c-Apply and extend previous understandings of operations with fractions ~ Understand subtraction of rational numbers as adding the additive inverse, p â€" $q=$ $p+\left(\hat{a} €^{\prime \prime} q\right)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1d-Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A.3-Apply and extend previous understandings of operations with fractions ~ Solve real-world and mathematical problems involving the four operations with rational numbers.
7.NS.A.2-Apply and extend previous understandings of operations with fractions ~ Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.A.3-Apply and extend previous understandings of operations with fractions \sim Solve real-world and mathematical problems involving the four operations with rational numbers.

How do we work with	5.5 Dividing	Divide fractions and mixed	Reciporcal
fractions?	Fractions	numbers.	

Quotient

7.NS.A.2a-Apply and extend previous understandings of operations with fractions ~ Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (â€"1)(â€" 1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
7.NS.A.2b-Apply and extend previous understandings of operations with fractions ~ Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $\hat{a} €^{\prime \prime}(p / q)=\left(\hat{a} €^{\prime \prime} p\right) / q=$ $p /(a ̂ € " q)$. Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2c-Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to multiply and divide rational numbers.
7.NS.A.2-Apply and extend previous understandings of operations with fractions ~ Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.A.3-Apply and extend previous understandings of operations with fractions ~ Solve real-world and mathematical problems involving the four operations with rational numbers.
7.NS.A.2a-Apply and extend previous understandings of operations with fractions ~ Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (â€" 1)(â€" 1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
7.NS.A.2b-Apply and extend previous understandings of operations with fractions ~ Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $\hat{a} €^{\prime \prime}(p / q)=\left(\hat{a} €^{\prime \prime} p\right) / q=$ $p /(a ̂ € " q)$. Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2c-Apply and extend previous understandings of operations with fractions ~ Apply properties of operations as strategies to multiply and divide rational numbers.

How do we work with fractions?	5.6 Using Multiplicative Inverses to Solve Equations	Use multiplicative Multiplicative inverses to solve inverse equations.	Teacher Assessment 5.4 to 5.6
How do we work with fractions?	5.7 Equations and Inequalities with Rational Numbers	Use the LCD to solve equations and inequalities.	Assessment Unit 3 Fractions

7.EE.B.4b-Solve real-life and mathematical problems using numerical and algebraic expressions and equations \sim Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.

D 6. Ratio, Proportion, and Probability

e	Essential Questions	Content	Knowledge and Skills		Assessment	Lesson	Resources	Standards
C	How do we use ratios and proportions to solve problems?	6.1 Ratios and Rates	Find ratios and unit rates.	Ratio				7.RP.A.1-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.
e								7.RP.A.2b-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

e How do we use ratios	6.2 Writing and	Write and solve	Ratio
and proportions to	Solving	proportions.	
solve problems?	Proportions		

Proportion

How do we use ratios	6.3 Solving	Solve proportions Ratio
and proportions to	Proportions	using cross
solve problems?	Using Cross	products.
	Products	

How do we use ratios and proportions to solve problems?
6.4 Similar and

Congruent
Figures

Identify similar and congruent figures.

Equivalent Ratios

Proportion

Cross Products
Similar Figures
Teacher
Assessment
6.1 to 6.3
7.RP.A.2-Analyze proportional relationships and use them to solve real-world and mathematical problems ~
Recognize and represent proportional relationships between quantities.
7.RP.A.3-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Use proportional relationships to solve multistep ratio and percent problems.
7.RP.A.2b-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
7.RP.A.2c-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Represent proportional relationships by equations.
7.RP.A.2-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Recognize and represent proportional relationships between quantities.
7.RP.A.2b-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
7.RP.A.2c-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Represent proportional relationships by equations. 7.RP.A.3-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Use proportional relationships to solve multistep ratio and percent problems.
7.RP.A.3-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Use proportional relationships to solve multistep ratio and percent problems.

n How do we calculate	7.1 Percents and Use a fraction to Percent	
percents?	Fractions	find the percent
		of a number.

u
a
r
y

How do we calculate	7.2 Percents and Use proportions Percent
percents?	Proportions

Proportion

How do we calculate percents?

How do we calculate percents?
$\begin{array}{ll}\text { 7.4 The Percent } & \begin{array}{l}\text { Use equations to Percent } \\ \text { solve percent } \\ \text { Equation }\end{array}\end{array}$

Teacher
Assessment
7.1 to 7.4
7.RP.A.2-Analyze proportional relationships and use them to solve real-world and mathematical problems ~
Recognize and represent proportional relationships between quantities.
7.RP.A.3-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Use proportional relationships to solve multistep ratio and percent problems
7.RP.A.2c-Analyze proportional relationships and use them to solve real-world and mathematical problems ~
Represent proportional relationships by equations.
7.RP.A.2-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Recognize and represent proportional relationships between quantities.
7.RP.A.2c-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Represent proportional relationships by equations. 7.RP.A.3-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Use proportional relationships to solve multistep ratio and percent problems.
7.RP.A.2-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Recognize and represent proportional relationships between quantities.
7.RP.A.2c-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Represent proportional relationships by equations. 7.RP.A.3-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Use proportional relationships to solve multistep ratio and percent problems.
7.RP.A.2-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Recognize and represent proportional relationships between quantities.

Equation

How do we calculate percents?	7.5 Percent of Change	Find a percent of change in a quantity.	Commission Percent of Change	
			Percent of Increase	
How do we calculate percents?			Percent of Decrease	
	7.6 Percent Applications	Find markups, discounts, sales tax, and tips.	Markup	Teacher Assessment 7.5 to 7.7
				Common Assessment

F 10. Measurement, Area and Volume
7.RP.A.2c-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Represent proportional relationships by equations. 7.RP.A.3-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Use proportional relationships to solve multistep ratio and percent problems.
7.RP.A.2-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Recognize and represent proportional relationships between quantities.
7.RP.A.2c-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Represent proportional relationships by equations. 7.RP.A.3-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Use proportional relationships to solve multistep ratio and percent problems.
7.RP.A.2-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Recognize and represent proportional relationships between quantities.
7.RP.A.2c-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Represent proportional relationships by equations. 7.RP.A.3-Analyze proportional relationships and use them to solve real-world and mathematical problems ~ Use proportional relationships to solve multistep ratio and percent problems.

geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G.A.2-Draw construct, and describe geometrical figures and describe the relationships between them ~ Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G.B.4-Solve real-life and mathematical problems involving angle measure, area, surface area, and volume ~ Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
7.G.B.4-Solve real-life and mathematical problems involving angle measure, area, surface area, and volume ~ Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
7.G.A.3-Draw construct, and describe geometrical figures and describe the relationships between them ~ Describe the two-dimensional figures that result from slicing threedimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

			Lateral Face	
			Lateral Area	
			Prism	
			Cylinder	
How do we calculate area and volume?	10.7 Volume of	Find the volume	Volume	Teacher
	Prisms and	of prisms and		Assessment
	Cylinders	cylinders		10.5 to 10.7

Common
Assessment

M11. Statistics and
Probability

a	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments Lessons	Resources	Standards
	How can we calculate the probability of an event?	11.7 Combinations	Use combinations to count possibilities	Combination			7.SP.C.7-Investigate chance processes and develop, use, and evaluate probability models ~ Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
c				Arrangement			7.SP.C.8-Investigate chance processes and develop, use, and evaluate probability models \sim Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
	How can we calculate the probability of an event?	11.8 Probability of Disjoint and Overlapping Events	Find the probability that event A or event B occurs.	Disjoint events			7.SP.C.7a-Investigate chance processes and develop, use, and evaluate probability models ~ Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.

Mutually exclusive evnets

Overlapping
events

How can we calculate the probability of an	11.5 Interpreting Data	Make conclusions about	Margin of Error	Teacher Assessment
event?		populations using		6.7, 6.8, 11.4
		surveys.		\& 11.5
				3/31/2016

7.SP.C.7b-Investigate chance processes and develop, use, and evaluate probability models ~ Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.
7.SP.C.8a-Investigate chance processes and develop, use, and evaluate probability models ~ Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
7.SP.C.8b-Investigate chance processes and develop, use, and evaluate probability models \sim Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., â€œrolling double sixesâ€ identify the outcomes in the sample space which compose the event.
7.SP.C.8c-Investigate chance processes and develop, use, and evaluate probability models ~ Design and use a simulation to generate frequencies for compound events.
7.SP.A.1-Use random sampling to draw inferences about a population ~ Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
7.SP.A.2-Use random sampling to draw inferences about a population ~ Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.
7.SP.B.3-Draw informal comparative inferences about two populations ~ Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.

Prediction

How can we calculate 6.7 Probability Find probability Event the probability of an and Odds and odds. event?
How can we calculate
the probability of an event?

11.6

 PermutationsUse permutations Permutation to count possibilities.

Factorial

Outcome

Favorable/Unfav
orable

Probability
Theoretical
Probability
7.SP.B.4-Draw informal comparative inferences about two populations ~ Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.
7.SP.C.5-Investigate chance processes and develop, use, and evaluate probability models ~ Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
7.SP.C.6-Investigate chance processes and develop, use, and evaluate probability models ~ Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.
7.SP.C.6-Investigate chance processes and develop, use, and evaluate probability models ~ Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.
7.SP.C.7-Investigate chance processes and develop, use, and evaluate probability models ~ Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
7.SP.C.7a-Investigate chance processes and develop, use, and evaluate probability models ~ Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.

			Experimental Probability Odds	
How can we calculate the probability of an event?	6.8 Counting Principle	Use the counting principle to find probabilities.	Tree Diagram Couting Principle	
How can we calculate the probability of an event?	11.4 Collecting Data	Identify populations and sampling methods	Random sample	
			Systematic sample	
			Stratified sample	
			Convenient sample Self-selected sample	
How can we calculate the probability of an event?	11.9 Independent and Dependent Events	Find probability that two events occur.	Independent events	Teacher Assessment 11.6, 11.7, 11.8 \& 11.9
			Dependent events	

7.SP.C.8-Investigate chance processes and develop, use, and evaluate probability models \sim Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
7.SP.A.1-Use random sampling to draw inferences about a population ~ Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
7.SP.A.2-Use random sampling to draw inferences about a population ~ Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.
7.SP.C.7a-Investigate chance processes and develop, use, and evaluate probability models ~ Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.
7.SP.C.7b-Investigate chance processes and develop, use, and evaluate probability models ~ Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.

Probability

How can we calculate	Mean, Median,	Find and use	Mean	Assessment
the probability of an	Mode	mean, median,	Median	Unit 7
event?		and mode.	Mode	$3 / 31 / 2016$
		Range		

How do we rewrite	4.7 Scientific	Write numbers	Scientific
large or small numbers	Notation	using scientific	notation
in other forms?		notation.	

Standard form

How do we solve problems with square roots?	9.1 Square Roots	Find approximate square roots of numbers.	Square root Perfect square Radical expressions Approximate

Hypoteneuse

Pythagorean

Theorem
8.EE.A.3-Expressions and Equations Work with radicals and integer exponents ~ Use numbers expressed in the form of a single digit times a whole-number power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.
8.EE.A.4-Expressions and Equations Work with radicals and integer exponents ~ Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.
8.EE.A.2-Expressions and Equations Work with radicals and integer exponents ~ Use square root and cube root symbols to represent solutions to equations of the form $\times 2$ $=p$ and $x 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that ? 2 is irrational.
8.EE.A.2-Expressions and Equations Work with radicals and integer exponents ~ Use square root and cube root symbols to represent solutions to equations of the form $\times 2$ $=p$ and $x 3=p$, where p is a positive rational number.
Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that ?2 is irrational.
8.G.B.6-Understand and apply the Pythagorean Theorem ~ Explain a proof of the Pythagorean Theorem and its converse.
8.G.B.7-Understand and apply the Pythagorean Theorem ~ Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
8.G.B.8-Understand and apply the Pythagorean Theorem ~ Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

a		Knowledge and		
	Essential Questions	Content	Skills	Vocab
y How do we rewrite	4.7 Scientific	Write numbers	Scien	
large or small numbers	Notation	using scientific	notat	
in other forms?		notation.		

Standard form

Find approximate Square root square roots of Perfect square numbers.

Radical
expressions
Approximate

How do we solve	3.2 Solving	Solve equations equations	Like Term
algebraically?	Equations	with variables on	
	Having Like	both sides.	
	Terms and		Inverse
	Parenthesis		Operation

8.EE.A.3-Expressions and Equations Work with radicals and integer exponents ~ Use numbers expressed in the form of a single digit times a whole-number power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.
8.EE.A.4-Expressions and Equations Work with radicals and integer exponents ~ Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.
8.EE.A.2-Expressions and Equations Work with radicals and integer exponents ~ Use square root and cube root symbols to represent solutions to equations of the form $\times 2$ $=p$ and $x 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that ? 2 is irrational.
8.EE.C.7-Analyze and solve linear equations and pairs of simultaneous linear equations \sim Solve linear equations in one variable.
8.EE.C.7b-Analyze and solve linear equations and pairs of simultaneous linear equations \sim Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
8.EE.C.7-Analyze and solve linear equations and pairs of simultaneous linear equations \sim Solve linear equations in one variable.

Both Sides

How do we solve problems with square roots?
9.3 Pythagorean Theorem

How do we solve	3.4 Solving	Solve inequalities	Inequality	Teacher
equations	Inequalities	using addition or		Assessment
algebraically?	Using Addition	subtraction.		3.2, 3.3, 3.4
	or Subtraction		Solution of an	5/15/2016
			inequality	

Use the Pythagorean theorem to solve problems.

Teacher
Assessment
4.7, 9.1 \& 9.3

Hypoteneuse

Pythagorean
Theorem
inequality

Equivalent
inequalities
Solving
inequalities using multiplication or
8.EE.C.7b-Analyze and solve linear equations and pairs of simultaneous linear equations \sim Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
8.EE.A.2-Expressions and Equations Work with radicals and integer exponents ~ Use square root and cube root symbols to represent solutions to equations of the form $\times 2$ $=p$ and $x 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that ? 2 is irrational.
8.G.B.6-Understand and apply the Pythagorean Theorem ~ Explain a proof of the Pythagorean Theorem and its converse.
8.G.B.7-Understand and apply the Pythagorean Theorem ~ Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
8.G.B.8-Understand and apply the Pythagorean Theorem ~ Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
8.EE.C.7-Analyze and solve linear equations and pairs of simultaneous linear equations ~ Solve linear equations in one variable.
8.EE.C.7b-Analyze and solve linear equations and pairs of simultaneous linear equations ~ Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
8.EE.C.7-Analyze and solve linear equations and pairs of simultaneous linear equations ~ Solve linear equations in one variable.

Multiplication or division
Division

How do we solve	3.6 Solving	Solve multi-step	Common
equations	Multi-Step	inequalities.	Assessment
algebraically?	Inequalities		

8.EE.C.7b-Analyze and solve linear equations and pairs of simultaneous linear equations \sim Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
8.EE.C.7-Analyze and solve linear equations and pairs of simultaneous linear equations ~ Solve linear equations in one variable.
8.EE.C.7b-Analyze and solve linear equations and pairs of simultaneous linear equations ~ Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

