Teacher: CORE AP	
Calculus AB	Year: 2017-2018
Course: AP Calculus AB	Month: All Months

Functions and Graphs

Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments Lessons Resources	Standards
	Functions	Define a function	Functions		2.8.11.B-Evaluate and simplify algebraic expressions and solve and graph linear, quadratic, exponential, and logarithmic equations and inequalities, and solve and graph systems of equations and inequalities.
		Determine if a relation is a function from multiple representations of data (graphs, tables, equations)			2.8.11.D-Demonstrate an understanding and apply properties of functions (domain, range, inverses) and characteristics of families of functions (linear, polynomial, rational, trigonometric, exponential, logarithmic).
			Asymptotes		
			Domain		
			Range		
	Characteristics of functions	Determine the domain and range of a function from graph or equation	Even and Odd Functions		2.8.11.B-Evaluate and simplify algebraic expressions and solve and graph linear, quadratic, exponential, and logarithmic equations and inequalities, and solve and graph systems of equations and inequalities.
		Recognize even and odd functions in graphs and equations			2.8.11.D-Demonstrate an understanding and apply properties of functions (domain, range, inverses) and characteristics of families of functions (linear, polynomial, rational, trigonometric, exponential, logarithmic).
		Interpret and find formulas for piecewise functions	Domain		
			Range		
			Piecewise		
			Functions		

2.A.2-Derivative interpreted as an instantaneous rate of change
2.A.3-Derivative defined as the limit of the difference quotient
2.A.4-Relationship between differentiability and continuity
2.B.1-Derivative at a point- Slope of a curve at a point. Examples are emphasized, including points at which there are vertical tangents and points at which there are no tangents.
2.C.4-Equations involving derivatives and vice versa.
2.F.1-Computation of derivatives- Knowledge of derivatives of basic functions, including power, exponential, logarithmic, trigonometric, and inverse trigonomic functions
2.F.2-Basic rules for the derivative of sums, products, and quotients of functions
2.E.5-Interpretation of the derivative as a rate of change in varied applied contexts, including velocity, speed, and acceleration
2.B.3-Instantaneous rate of change as the limit of average rate of change
2.B.4-Approximate rate of change from graphs and tables of values

	Instantaneous Rate of Change -	
		Tangent line Average Rate of Change - Secant
		Line Velocity
		Acceleration

2.A.1-Concept of the derivative-Derivative presented graphically, numerically, and analytically
2.F.3-Chain rule and implicit differentiation
2.E.4-Use of implicit differentiation to find the derivative of an inverse function
2.F.3-Chain rule and implicit differentiation 2.F.1-Computation of derivatives- Knowledge of derivatives of basic functions, including power, exponential, logarithmic, trigonometric, and inverse trigonomic functions
2.F.1-Computation of derivatives- Knowledge of derivatives of basic functions, including power, exponential, logarithmic, trigonometric, and inverse trigonomic functions

D Applications of the Derivative

c

Content	Knowledge and Skills	Vocabulary	Assessments Lessons Resources Standards
Extreme Values of	Determine local or global exitical Points	2.E.1-Applications of derivatives- Analysis of Functions	curves, including the notions of monotonicity and extreme values of
	cunctions	2.E.2-Optimization, both absolute (global) and relative (local) extreme	

Mean Value	Apply Mean Value Theorem	Local Extrema Mean Value
Theorem		Theorem
Connecting derivatives and graphs	Find intervals on which a function is increasing or decreasing	
	Apply the First and	Increasing
	Second Derivative tests to determine local extreme values of a function	Functions
	Determine the concavity of a function and locate points of inflection by analyzing the second derivative	
	Graph a function using	Decreasing
	information about the derivatives	Functions
		Horizontal
		Asymptotes
Optimization		Points of
		Inflection
		Concavity
		Primary
		Equation
Linearizartion and		Secondary
		Equation
		Local
Newton's Method		Linearization
Related Rates		Differentiable
		Functions of
		Time

2.C.3-The Mean Value Thereon and its geometric consequences
2.C.4-Equations involving derivatives and vice versa.
2.C.2-Relationship between the increasing and decreasing behavior of f and the sign of f '
2.D.1-Second derivatives- Corresponding characteristics of the graphs of f, f^{\prime}, and"
2.D.2-Relationship between the concavity of the f and the sign of $\mathrm{f}^{\prime \prime}$
2.D.3-Points of inflection as places where concavity changes
2.E.1-Applications of derivatives- Analysis of curves, including the notions of monotonicity and concavity
2.E.2-Optimization, both absolute (global) and relative (local) extreme
2.B.2-Tangent line to a curve at a point and local linear approximation
2.E.3-Modeling rates of change, including related rates problems

	Trapezoidal Rule	Understand the relationship between the derivative and the definite integral as expressed in the Fundamental Theorem of Calculus Approximate the definite integral by using the Trapezoidal Rule	Trapezoidal Method		3.C.2-Use of the Fundamental Theorem to represent a particular antiderivative, and the analytical and graphical analysis of functions so defined 3.F.1-Numerical approximations to definite integrals-Use of Riemann sums (using left, right, and midpoint evaluation points) and trapezoidal sums to approximate definite integrals of functions represented algebraically, graphically, and by tables of values
F Differential Equations and Math Modeling					
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments Lessons Resources	Standards
b	Anti-derivatives and Slope Fields	Construct anti-derivatives using the Fundamental Theorem of Calculus	Slope Fields		3.C.2-Use of the Fundamental Theorem to represent a particular antiderivative, and the analytical and graphical analysis of functions so defined
r		Find anti-derivatives of polynomials, exponential and selected trigonometric functions			3.E.2-Solving separable differential equations and using them in modeling (in particular, studying the equation $y^{\prime}=$ key and exponential growth)
u		Solve initial value problems	Initial Condition		
a		Construct and interpret slope fields			
r 退					
y	Integration by Substitution	Compute indefinite and definite integrals by substitution Solve separable differential equations	U-Substitution		3.D.1-Techniques of antidifferentiation- Antiderivatives following directly from derivatives of basic functions 3.D.2-Antiderivatives by substitution of variables (including change of limits for definite integrals)

Exponential Growth	Solve problems involving	Separable
and Decay	exponential growth and decay	Differential
	Equaions	

1st Order
 Differential
 Equations

Population Growth Solve problems involving Half-Life exponential or logistic population growth

Differential
Equaions

Continuous
Compound
Interest
3.E.1-Applications of antidifferentiation-Finding specific antiderivatives using initial conditions, including applications to motion along a line
3.E.2-Solving separable differential equations and using them in modeling (in particular, studying the equation $\mathrm{y}^{\prime}=$ key and exponential growth)
3.E.1-Applications of antidifferentiation-Finding specific antiderivatives using initial conditions, including applications to motion along a line
3.E.2-Solving separable differential equations and using them in modeling (in particular, studying the equation $y^{\prime}=$ key and exponential growth)

Areas in the plane	Calculate areas of regions in a plane using integration	
Volumes Bound		

3.F.1-Numerical approximations to definite integrals-Use of Riemann sums (using left, right, and midpoint evaluation points) and trapezoidal sums to approximate definite integrals of functions represented algebraically, graphically, and by tables of values
3.B.1-Applications of integrals-Whatever applications are chosen, the emphasis is on using the method of setting up an approximating Riemann sum and representing its limits a definite integral. To provide a common foundation, specific applications should include using the integral of a rate of change to give accumulated change, finding the area of a region, the volume of a solid with known cross sections, the average value of a function, and the distance traveled by a particle along a line.
3.B.1-Applications of integrals-Whatever applications are chosen, the emphasis is on using the method of setting up an approximating Riemann sum and representing its limits a definite integral. To provide a common foundation, specific applications should include using the integral of a rate of change to give accumulated change, finding the area of a region, the volume of a solid with known cross sections, the average value of a function, and the distance traveled by a particle along a line.

Lengths of curves Calculate lengths of Arc Length curves

Applications from Model problems involving
science and statistics rates of change in a
variety of applications

3.B.1-Applications of integrals-Whatever applications are chosen, the emphasis is on using the method of setting up an approximating Riemann sum and representing its limits a definite integral. To provide a common foundation, specific applications should include using the integral of a rate of change to give accumulated change, finding the area of a region, the volume of a solid with known cross sections, the average value of a function, and the distance traveled by a particle along a line.
3.B.1-Applications of integrals-Whatever applications are chosen, the emphasis is on using the method of setting up an approximating Riemann sum and representing its limits a definite integral. To provide a common foundation, specific applications should include using the integral of a rate of change to give accumulated change, finding the area of a region, the volume of a solid with known cross sections, the average value of a function, and the distance traveled by a particle along a line.

