Teacher: CORE AP

Calculus AB Year: 2017-2018

Course: AP Calculus AB Month: All Months

S Functions and Graphs

e Essential C	Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
р		Functions	Define a function	Functions				2.8.11.B-Evaluate and simplify algebraic expressions and solve and graph linear, quadratic, exponential, and logarithmic equations and inequalities, and solve and graph systems of equations and inequalities.
t			Determine if a relation is a function from multiple representations of data (graphs, tables, equations)					2.8.11.D-Demonstrate an understanding and apply properties of functions (domain, range, inverses) and characteristics of families of functions (linear, polynomial, rational, trigonometric, exponential, logarithmic).
e				Asymptotes				
m b e				Domain				
r				Range				
		Characteristics of functions	Determine the domain and range of a function from graph or equation	Even and Odd Functions				2.8.11.B-Evaluate and simplify algebraic expressions and solve and graph linear, quadratic, exponential, and logarithmic equations and inequalities, and solve and graph systems of equations and inequalities.
			Recognize even and odd functions in graphs and equations					2.8.11.D-Demonstrate an understanding and apply properties of functions (domain, range, inverses) and characteristics of families of functions (linear, polynomial, rational, trigonometric, exponential, logarithmic).
			Interpret and find formulas for piecewise functions	Domain				
				Range				
				Piecewise				
				Functions				

Graphs of functions	Recognize types of	Vertical and	2.8.11.B-Evaluate and simplify algebraic
	functions from a graph	Horizontal	expressions and solve and graph linear, quadratic,
		Transformations	exponential, and logarithmic equations and
			inequalities, and solve and graph systems of equations and inequalities.
	Determine the equation		2.8.11.D-Demonstrate an understanding and
	of a function using		apply properties of functions (domain, range,
	transformations		inverses) and characteristics of families of
			functions (linear, polynomial, rational,
			trigonometric, exponential, logarithmic).
Types of functions	Review, linear,	Period	2.8.11.B-Evaluate and simplify algebraic
	polynomial, exponential,		expressions and solve and graph linear, quadratic,
	logarithmic and trig		exponential, and logarithmic equations and
	functions		inequalities, and solve and graph systems of
			equations and inequalities.
			2.8.11.D-Demonstrate an understanding and
			apply properties of functions (domain, range,
			inverses) and characteristics of families of
			functions (linear, polynomial, rational,
			trigonometric, exponential, logarithmic).
		Ampltitude	
		Vertex	

O Limits and Continuity

С								
	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons Re	esources	Standards
t		Rates of change and	Calculate average and	Limits				1.A.2-Calculating limits using algebra
		limits	instantaneous speed					
0			Define limits					1.A.3-Estimating limits from graphs or tables of
								data
b			Apply properties of limits	One-Sided				
				Limits				
е			Determine limits from a					
			graph, from a table and					
			from the function					
			equation					
r			Apply the Sandwich					
			Theorem to find limits					
				Two-Sided				
				Limit				
				Sandwich				
				Theorem				

Limits involving infinity	Find and verify end behavior models for functions Calculate limits as x approaches infinity Determine limits that are	Limits as x approaches infinity Horizontal	1.B.1-Asymptotic and unbounded behavior- Understanding asymptotes in terms of graphical behavior1.B.2-Describing asymptotic behavior in terms of limits involving infinity
	infinite Identify horizontal and vertical asymptotes from limits	Asymptotes	
		Vertical	
Continuity	Determine definition of continuity at a point	Asymptotes Jump Discontinuity	1.C.1-Continuity as a property of functions- An intuitive understanding of continuity. (The function values can be made as close as desired by taking sufficiently close values of the domain.)
	Determine points of discontinuity and the type of discontinuity Extend or modify a function with a removable discontinuity	•	1.C.2-Understanding continuity in terms of limits
	Apply properties combinations and compositions of continuous functions Apply the Intermediate Value Theorem to continuous functions	Removable Discontinuity	
		Infinite Discontinuity	

N Derivatives

0	Essential Questions	Contont	Knowledge and Skills	Vocabulary	Assassments	Lessons Resources	Standards
	Essential Questions	Content	Knowledge and Skills	vocabulary	Assessments	Lessons Resources	Statiuarus
٧		Rates of change and					
		tangent lines					
е		Derivative of a	Calculate slopes and	Difference			2.A.1-Concept of the derivative-Derivative
		Function	derivatives using the	Quotient			presented graphically, numerically, and
			definition of the				analytically
			derivative				

		Approximate derivatives numerically and graphically	Symmetric Difference	2.A.2-Derivative interpreted as an instantaneous rate of change2.A.3-Derivative defined as the limit of the difference quotient
			Quotient	2.A.4-Relationship between differentiability and continuity
			Vertical Tangent	
Diffe		Determine where a function is not differentiable Determine continuity from differentiability	Cusp Cusp	2.B.1-Derivative at a point- Slope of a curve at a point. Examples are emphasized, including points at which there are vertical tangents and points at which there are no tangents.
			Vertical Tangent	
	es for erentiation	Calculate derivatives (including second and higher order derivative) using the rules of differentiation	Jump Discontinuity Product Rule	2.C.4-Equations involving derivatives and vice versa.2.F.1-Computation of derivatives- Knowledge of derivatives of basic functions, including power, exponential, logarithmic, trigonometric, and inverse trigonomic functions
			Quotient Rule Power Rule Intermediate Value Theorem	2.F.2-Basic rules for the derivative of sums, products, and quotients of functions
	ocity and other es of change	Calculate instantaneous rate of change using rules for differentiation Analyze straight line motion using derivatives Solve problems involving rates of change	Derivatve	2.E.5-Interpretation of the derivative as a rate of change in varied applied contexts, including velocity, speed, and acceleration 2.B.3-Instantaneous rate of change as the limit of average rate of change 2.B.4-Approximate rate of change from graphs and tables of values

m

b

e

		Instantaneous Rate of Change - Tangent line Average Rate of Change - Secant Line Velocity Acceleration	
Derivatives of Trig Functions	Determine and apply the rules for differentiating the six trig functions		2.A.1-Concept of the derivative-Derivative presented graphically, numerically, and analytically
Chain Rule	Differentiate composite functions using the chain rule	Chain Rule	2.F.3-Chain rule and implicit differentiation
Implicit Differentiation	Find derivatives using implicit differentiation	Implicit Differentiation	2.E.4-Use of implicit differentiation to find the derivative of an inverse function2.F.3-Chain rule and implicit differentiation
Derivatives of Inverse Trig Functions	 Find derivatives of inverse functions Calculate derivatives of 	Inverse Trig Functions:	2.F.1-Computation of derivatives- Knowledge of derivatives of basic functions, including power, exponential, logarithmic, trigonometric, and
	inverse trig functions	Arcsine Arctangent Arcsecant	inverse trigonomic functions
Derivatives of Exponential and Logarithmic Functions	Calculate derivatives of logarithmic and exponential functions		2.F.1-Computation of derivatives- Knowledge of derivatives of basic functions, including power, exponential, logarithmic, trigonometric, and inverse trigonomic functions

D Applications of the Derivative

е								
	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
С		Extreme Values of	Determine local or global	Critical Points				2.E.1-Applications of derivatives- Analysis of
		Functions	extreme values of					curves, including the notions of monotonicity and
			functions					concavity
e								2.E.2-Optimization, both absolute (global) and
								relative (local) extreme
m	l							

b			Absolute	
			Extrema	
e				
r				
			Local Extrema	2.62 Tl. M
	Mean Value	P.P. 7	Mean Value	2.C.3-The Mean Value Thereon and its geometric
	Theorem	Theorem Find intervals on which a	Theorem	consequences 2.C.4-Equations involving derivatives and vice
		function is increasing or		versa.
		decreasing		versa.
	Connecting	-	Increasing	2.C.2-Relationship between the increasing and
	derivatives and	Second Derivative tests to	_	decreasing behavior of f and the sign of f'
	graphs	determine local extreme		ğ ş
		values of a function		
		Data marina tha aga agaith.		2.D.4. Sacard dariustinas Carrassandias
		Determine the concavity of a function and locate		2.D.1-Second derivatives- Corresponding characteristics of the graphs of f, f', and"
		points of inflection by		characteristics of the graphs of 1, 1, and
		analyzing the second		
		derivative		
		Graph a function using	Decreasing	2.D.2-Relationship between the concavity of the f
		information about the	Functions	and the sign of f"
		derivatives		•
				2.D.3-Points of inflection as places where
				concavity changes
			Horizontal	2.E.1-Applications of derivatives- Analysis of
			Asymptotes	curves, including the notions of monotonicity and
				concavity
			Points of	
			Inflection	
	0		Concavity	2520
	Optimization		Primary	2.E.2-Optimization, both absolute (global) and
			Equation	relative (local) extreme
			Secondary	
			Equation	
	Linearizartion and		Local	2.B.2-Tangent line to a curve at a point and local
	Newton's Method		Linearization	linear approximation
	Related Rates		Differentiable	2.E.3-Modeling rates of change, including related

Functions of

Time

rates problems

J Definite Integral

а							
	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons Resources	Standards
n		Estimating with Finite Sums	Approximate the area under the graph of a nonnegative continuous	Rectangular Approximation Method			3.F.1-Numerical approximations to definite integrals-Use of Riemann sums (using left, right, and midpoint evaluation points) and trapezoidal
u			function by using				sums to approximate definite integrals of
a r			rectangle approximation methods	Left-Ram			functions represented algebraically, graphically, and by tables of values
У				Right -Ram Mid-Ram Trapezoidal Met hod			
		Definite Integrals	Interpret the area under a graph as a net accumulation of a rate of change				3.A.1-Interpretation and properties of definite integrals-Definite integral as a limit of Riemann sums
			Express the area under a curve as a definite integral and as a limit of Reimann sums				3.A.2-Definite integral of the rate of change of a quantity over an interval interpreted as the change of the quantity over the interval:a b, f' (x)dx= f(b) -f(a) 3.A.3-Basic properties of definite integrals (examples include additivity and linearity)
		Definite Integrals and Anti-derivatives	Compute the area under a curve using a numerical integration procedure	=			3.A.1-Interpretation and properties of definite integrals-Definite integral as a limit of Riemann sums
			Apply rules for definite integrals				3.A.2-Definite integral of the rate of change of a quantity over an interval interpreted as the change of the quantity over the interval:a b, f' (x)dx= f(b) -f(a)
			Find the average value of a function over a closed interval				3.A.3-Basic properties of definite integrals (examples include additivity and linearity)
		Fundamental Theorem of Calculus	Apply the Fundamental				3.C.1-Fundamental Theorem of Calculus-Use of the Fundamental Theorem to evaluate definite integrals

	Understand the	
	relationship between the	
	derivative and the	
	definite integral as	
	expressed in the	
	Fundamental Theorem of	
	Calculus	
Trapezoidal Rule	Approximate the definite	Trapezoidal
	integral by using the	Method
	Trapezoidal Rule	

3.C.2-Use of the Fundamental Theorem to represent a particular antiderivative, and the analytical and graphical analysis of functions so defined

3.F.1-Numerical approximations to definite integrals-Use of Riemann sums (using left, right, and midpoint evaluation points) and trapezoidal sums to approximate definite integrals of functions represented algebraically, graphically, and by tables of values

F Differential Equations and Math Modeling

e								
	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
b		Anti-derivatives and Slope Fields	Construct anti-derivatives using the Fundamental Theorem of Calculus	Slope Fields				3.C.2-Use of the Fundamental Theorem to represent a particular antiderivative, and the analytical and graphical analysis of functions so defined
r			Find anti-derivatives of polynomials, exponential and selected trigonometric functions					3.E.2-Solving separable differential equations and using them in modeling (in particular, studying the equation y' = key and exponential growth)
u			Solve initial value problems	Initial Condition				
а			Construct and interpret slope fields					
r								
У		Integration by Substitution	Compute indefinite and definite integrals by substitution Solve separable differential equations	U-Substitution				3.D.1-Techniques of antidifferentiation-Antiderivatives following directly from derivatives of basic functions3.D.2-Antiderivatives by substitution of variables (including change of limits for definite integrals)

	Exponential Growth and Decay	Solve problems involving exponential growth and decay	Separable Differential Equaions	3.E.1-Applications of antidifferentiation-Finding specific antiderivatives using initial conditions, including applications to motion along a line
				3.E.2-Solving separable differential equations and using them in modeling (in particular, studying the equation y' = key and exponential growth)
			1st Order Differential Equations	
	Population Growth	Solve problems involving exponential or logistic population growth	Half-Life	3.E.1-Applications of antidifferentiation-Finding specific antiderivatives using initial conditions, including applications to motion along a line
				3.E.2-Solving separable differential equations and using them in modeling (in particular, studying the equation y' = key and exponential growth)
			Continuous Compound Interest	
Applications of Definite Integrals				

МАр Int

a						
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons Resources	Standards
r	Integral as Net	Solve problems to find	Area under a			3.B.1-Applications of integrals-Whatever
	Change	the net change by	curve			applications are chosen, the emphasis is on using
		integrating a rate				the method of setting up an approximating
						Riemann sum and representing its limits a
						definite integral. To provide a common
						foundation, specific applications should include
						using the integral of a rate of change to give
						accumulated change, finding the area of a region,
						the volume of a solid with known cross sections,
						the average value of a function, and the distance
						traveled by a particle along a line.

h	Areas in the plane	Calculate areas of regions in a plane using integration	Upper Bound

Volumes Of Calculate the volumes of Volumes of solids by slices or shells Revolution:

Surface area Calculate surface area of solids of revolution

Washer Method and Shell Method

- 3.F.1-Numerical approximations to definite integrals-Use of Riemann sums (using left, right, and midpoint evaluation points) and trapezoidal sums to approximate definite integrals of functions represented algebraically, graphically, and by tables of values
- 3.B.1-Applications of integrals-Whatever applications are chosen, the emphasis is on using the method of setting up an approximating Riemann sum and representing its limits a definite integral. To provide a common foundation, specific applications should include using the integral of a rate of change to give accumulated change, finding the area of a region, the volume of a solid with known cross sections, the average value of a function, and the distance traveled by a particle along a line.
- 3.B.1-Applications of integrals-Whatever applications are chosen, the emphasis is on using the method of setting up an approximating Riemann sum and representing its limits a definite integral. To provide a common foundation, specific applications should include using the integral of a rate of change to give accumulated change, finding the area of a region, the volume of a solid with known cross sections, the average value of a function, and the distance traveled by a particle along a line.

Applications from	Madal problems involvi		2.D.1. Applications of integrals Whatever
			using the integral of a rate of change to give accumulated change, finding the area of a the volume of a solid with known cross see the average value of a function, and the ditraveled by a particle along a line.
Lengths of curves	Calculate lengths of curves	Arc Length	3.B.1-Applications of integrals-Whatever applications are chosen, the emphasis is on the method of setting up an approximating Riemann sum and representing its limits a definite integral. To provide a common foundation, specific applications should in

pplications are chosen, the emphasis is on using e method of setting up an approximating emann sum and representing its limits a efinite integral. To provide a common undation, specific applications should include sing the integral of a rate of change to give ccumulated change, finding the area of a region, e volume of a solid with known cross sections, e average value of a function, and the distance aveled by a particle along a line.

Applications from Model problems involving science and statistics rates of change in a variety of applications

3.B.1-Applications of integrals-Whatever applications are chosen, the emphasis is on using the method of setting up an approximating Riemann sum and representing its limits a definite integral. To provide a common foundation, specific applications should include using the integral of a rate of change to give accumulated change, finding the area of a region, the volume of a solid with known cross sections, the average value of a function, and the distance traveled by a particle along a line.

A Exam Preparation

р	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons Resource	s Standards
r		Exam Preparation	Exam Preparation				
i							
- 1							