Teacher: CORE Calculus	
H	Year: 2017-18
	Month: All
Course: Calculus H	Months

S September - Unit 1

Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments Lessons Resources	Standards
p What are the most t important topics and concepts needed in e order to start learning m calculus?	A. Lines	A1. To use increments to calculate slope. A2. To write and equation and sketch a graph of a line given specific information.	Slope Increments		2.8.A2.B-Evaluate and simplify algebraic expressions; solve and graph, quadratic, exponential, and logarithmic equations; and, solve and graph systems of equations and inequalities.
b					
e		A3. To identify the relationshiops between parallel lines, perpendicular lines and slopes.			
r		A4. To use linear regression equations to solve problems.			

What are the most important topics and concepts needed in order to start learning calculus?

What are the most important topics and concepts needed in order to start learning calculus?
B. Functions and B1. To identify domain and range of Domain/range Graphs
a functon using its graph or equation.

Boundary and

Boundary points

Even/odd
functions

B3. To interpret and find formulas
for piecewise defined functions.
B4. To write and evaluate
compositions of two functions.
C. Exponential C1. To determine the domain, range, Exponential Functions and graph of an exponential growth and function.
decay
2.8.A2.D-Demonstrate an understanding and apply properties of functions (domain, range, inverses) and characteristics of families of functions (linear, polynomial, rational, exponential, logarithmic).
2.8.A2.B-Evaluate and simplify algebraic expressions; solve and graph, quadratic, exponential, and logarithmic equations; and, solve and graph systems of equations and inequalities.

C2. To solve problems involving exponential growth and decay.
C3. To use exponential regression equations to solve problems.

What are the most important topics and concepts needed in order to start learning calculus?	D. Functions and D1. To identify a one-to-one Logarithms function.	one-to-one function	
		D2. To determine the algebraic representation and the graphical representation of a functio and its	Inverse

2.8.A2.D-Demonstrate an understanding and apply properties of functions (domain, range, inverses) and characteristics of families of functions (linear, polynomial, rational, exponential, logarithmic).
2.8.A2.B-Evaluate and simplify algebraic expressions; solve and graph, quadratic, exponential, and logarithmic equations; and, solve and graph systems of equations and inequalities.
2.8.A2.D-Demonstrate an understanding and apply properties of functions (domain, range, inverses) and characteristics of families of functions (linear, polynomial, rational, exponential, logarithmic).

2.11.A2.B-Analyze and interpret rates of

 growth/decay.2.8.A2.B-Evaluate and simplify algebraic expressions; solve and graph, quadratic, exponential, and logarithmic equations; and, solve and graph systems of equations and inequalities.

E2. To identify the periodicity and even-odd properties of the trig functions.

Trig functions

Inverse Trig
Functions
E3. To generate the graphs of the trig functions and explore various transformations upon these graphs.

E4. To use the inverse trig functions
to solve problems.

O October - Unit 2

b What does it mean for a B.

function to be	Differentiability
differentiable?	

e
r
How are derivatives

To graph from the graph of f prime; Differentiable graph f prime from the graph of f;
graph the derivative of a function
given numerically with data.
calculated?

What is velocity and how is it connected to the derivative?
D. Velocity and Other Rates of Change
C. Rules for

Differentiati

 onB1. To find where a function is not
differentiable and distinguish
between corners, cusps,
discontinuities, and vertical tangents.

corner

B2. To approximate derivatives numerically and graphically.
cusp
vertical tangent
Discontinuity
Intermediate
Value Theorem
for Derivatives
C1. To use the rules of differentiation Rules for
to calculate derivatives, including differentiation
second and higher order derivatives. Power Rule
Constant
Multiple Rule
Sum and
Difference Rule
Product Rule
Quotient Rule
Instantaneous
rate of change
Velocity
Speed
Acceleration
Marginal cost
Marginal
revenue
2.A.2-Derivative interpreted as an instantaneous rate of change
2.A.3-Derivative defined as the limit of the difference quotient
2.A.4-Relationship between differentiability and continuity
2.A.2-Derivative interpreted as an instantaneous rate of change
2.A.3-Derivative defined as the limit of the difference quotient
2.F.2-Basic rules for the derivative of sums, products, and quotients of functions
2.E.5-Interpretation of the derivative as a rate of change in varied applied contexts, including velocity, speed, and acceleration

Lower/Upper

limit of
integration
Area under a
curve (as a
definite integral)

```
N May-Unit 5 : The
    Definite Integral (Part 2)
```

Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments Lessons	Resources	Standards
y How can an integral be evaluated?	C. Definite Integrals and Anitderivatives	C1. To apply rules for definite integrals and find the average value of a function over a closed interval.	Definite integral Average value of a function Antiderivative Mean Value Theorem for Definite Integrals			3.D.1-Techniques of antidifferentiationAntiderivatives following directly from derivatives of basic functions
What is the Fundamental Theorem of Calculus and how is it applied?	D. Fundamental Theorem of Calculus	D1. To apply the Fundamental Theorem of Calculus.	Fundamental Theorem of Calculus Part 1 and Part 2			3.C.1-Fundamental Theorem of Calculus-Use of the Fundamental Theorem to evaluate definite integrals
		D2. To understand the relationshiop between the derivative and the definite integral as expressed in boths parts of the Fundamental Theorem of Calculus.	Average Daily Inventory			3.C.2-Use of the Fundamental Theorem to represent a particular antiderivative, and the analytical and graphical analysis of functions so defined
			Total area			3.D.1-Techniques of antidifferentiationAntiderivatives following directly from derivatives of basic functions
J June - Unit 6: Differential Equations and Mathema						
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments Lessons	Resources	Standards

n What is integration by A. substitution, when is it Antiderivatives used, and how is it
e applied?

A1. To construct antiderivatives using the Fundamental Theorem of Calculus.

Antiderivatives

Definite integral

Integration by
Substitution

A2. To solve initial value problems of the form $d y / d x=f(x), y$ "sub
0"=f(x"sub 0")
B1. To compute indefinite and definite integrals by the method of substitution
3.D.2-Antiderivatives by substitution of variables (including change of limits for definite integrals)
B. Integration by Substitution

