Teacher: CORE	
Discrete Math \&	Year: 2017-
Statistics	18
Course: Discrete	Month: All
Math \& Statistics	Months

Election Theory							
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
How do we determine one selection from many	Preference Schedules	Read and Interpret preference schedules	Plurality/Majority Method Borda Mehod				2.5.11.A-Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answer makes sense, and explain how the problem was solved in grade appropriate contexts.
that most satisfies the preferences of a large group of individuals?		Conduct th runoff method, rewriting the preference schedule to make a decision	Runoff/Sequential Runoff Method				
		Run head to head comparisons Interpret the paradox of the condorcet method	Condorcet Method				
		Compare the advantages/disadvantaves of each method in determining a winner					
	Weighted Voting	Discuss weighted voting in our own presidential election Generate a list of winning and minimally winning coalitions Determine the power index of a voting body	coalitions: winning and minimally winning power index				
Graph Theory							
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
How can a graph comprising of vertices and edges	. Simple Graphs	Construct simple graphs to illustrate relationships between general objects	critical path analysis				2.5.11.A-Develop a plan to analyze a problem, identify the information needed to solve the

be used to solve problems of critical path analysis?		

quickly and
efficiently count an
overwhelming
number of
outcomes?

	Fundamental Counting Principal	Use the multiplication principle, addition principal, and factorials to count a number of tasks in succession . Rearrange objects where some of the objects are identical	factorials				
			FCP (fundamental counting principal)				
	Permutations and Combination s	. Count the number of ways to perform a task when order matters Count the number of ways to perform a task when order does not matter . Use binomial coefficients to represent a combination Count the elements in a sample space for the denominator of a probability calculation	"n choose r" binomial coefficient				
Probability							
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
How can we determine the probability of two or more	Unions, Intersections	Using Venn diagrams to model events, and determine union and intersection	union and intersection				2.7.11.A-Use probability to predict the likelihood of an outcome in an experiment
events occurring?		Use formulas to calculate the union of 2, 3, 4 or ' n ' events. Investigate DeMorgan's Laws to learn about complements of unions/intersections					2.7.11.C-Compare odds and probability. 2.7.11.E-Use probability to make judgments about the likelihood of various outcomes

2.5.11.A-Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answer makes sense, and explain how the problem was solved in grade appropriate contexts.
2.5.11.B-Use symbols,
mathematical terminology,
standard notation, mathematical rules, graphing and other types of mathematical representations to communicate observations,
predictions, concepts, procedures, generalizations, ideas, and results.

DeMorgan's Laws

complements
Conditional recognize vocabulary that indicates that a Probability problem is conditional
. Use formulas to calculate the probability of an event given the occurrence of another event
if, from, given, when

Independenc Declare independence of two or more
iona
probability
intuitive
e, Mutual events intuitively by logical explanation
independence

formulaic

independence
mutually disjoint

undercoverage
processing,
response, and non
response error

Experiments							
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
How can randomized controlled experiments produce valid data?	A. Planning and Conducting Experiments	A1. Treatments, control groups, experimental units, random assignment, replication	observational studies and experiments			Ch5: Experiments: Good and Bad	2.6.11.A-Design and conduct an experiment using random sampling.
		A2. Hidden Bias, confounding, placebo effect, blinding					
		A3. Completely randomized design	explanatory,				
			response, and			Experiments in	
			lurking variables			the Real World	
		A4. Block and Matched Pairs designs					
		A5. Generalizing results from observational studies and experiments	randomization, replication and control			Articles:	
		A6. Random Digit Simulation				"Botched	
						Experiment	
						Leads to	
						Banning of	
						Red Dye FD\&C	
						\#2"	
		A7. Refusals, Non-adherers, and Dropouts	refusals, non-			"AIDS drug	
			adherers, and			Trials Enter	
			dropouts			New Age"	
	B.		RCE (randomized				
	Measuremen		controlled				
	t		experiments, block				
			designs, and				
			matched pairs				
		B1. Identifying the appropriate instrument				Ch7: Ethics	

Ch12:
Describing
Distributions
with Numbers

B1. Using Mean, median or mode to determine the center of a distribution
B2. Calculating standard deviation as a
measure of spread
B3. Finding the five number summary as a measure of spread

B4. Constructing a box and whisker plot to display a five number summary
B5. Determining which measure of spread is most appropriate
B. Numerical

Summaries of
Distributions

How can we use the properties of a Normal Distribution

to make conclusions	C. Density
about populations in Curves and	
nature?	Normal
	Distributions

density curves
Normal Distribution

Empirical Rule
X, Z,
probability
BiVariate Data

Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
How can we use a scatter plot and correlation to	A. Scatterplots and Correlation	A1. Determining explanatory and response variables	scatter plot			Ch 14: Describing Relationships; Scatterplots and Correlation	2.6.11.C-Select or calculate the appropriate measure of central tendency, calculate and apply the interquartile range for onevariable data, and construct a line of best fit and calculate its
assess the relationship between two quantitative variables?		A2. Assessing positive, negative, and no association					equation for two-variable data.
		A3. Describing direction, form and strength	association			Scatter Plots from Bush/ Buchanon 2000 Primary Election show the effects of the dimpled chads in Palm Beach County	
	B. Regression	A4. Calculating correlation as a measure of strength					

