Teacher: Core Multi Variable	
Calculus with Advanced Topics Course: Multi Variable Calculus with Advanced Topics	Year: 2017-18

S Vectors and Geometry of Space
e
Essential Questions Con
p How do patterns and functions
help us describe data and physical phenomena and solve a variety of problems?
How
relationships represented by numbers?
e How do geometric relationships and measurements help us to solve problems and make sense of the world?
describe vectors algebraically, graphically, vector functions

and verbally.

compute with vectors using properties of scalar vectors and vector operations.
solve problems involving force and velocity using components of vectors.
compute the dot product of vectors.
use dot product to determine the angle
between two vectors.
dot product
orthogonal vectors
cylindrical coordinates

O Vectors and Geometry of Space

Essential Questions
How do patterns and function
help us describe data and
physical phenomena and solve a variety of problems?
o How are quantitative relationships represented by numbers?

b	Parametric Surfaces	solve problems involving motion, acceleration, or force. graph and recognize parametric surfaces. find parametric representations of surfaces.	Projectile Motion				
e			Arc length				
r			Curvature				
			Torsion				
			Tangent Components				
			Normal Components				
			Planetary Motion				
J Partail Derivatives							
a							
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
n	Partial Derivative	find domain and range of functions of two variables.	Bounded/Unbounded				
u	Directional Derivative	decribe the level surfaces of functions with three variables.	Contour Lines				
a	Gradient Vector	determine if a function $f(x, y)$ has a limit at (a, b).	Limits and Continuity				
r	Lagrange Multiplier		Second Order Partial				
		function of $f(x, y)$.	Derivatives				
y		compute and interpret partial derivatives.	Linearization				
		use Clairault's Theorem to compute higher partial derivatives.	Differentials				
		verify whether or not a given function satisfies a partial differentiation equation.	Chain Rule				
		compute the tangent plane to a surface given by a function of two variables.	Implicit Differentiation				
		determine if a function is differentiable.	Directional Derivatives				
		use linearization to approximatthe values of a function.	Gradient				
			Tangent Planes				
			Saddle Points				
			Lagrange Multipliers				
F Partial Derivatives							
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources	Standards
b	Partial Derivatives	compute tangent planes to parametric surfaces.	Bounded/Unbounded				
r	Directional Derivatives	compute derivatives using the chain rule.	Contour Lines				

find the image of a set under a
transformation.
compute the Jacobian of a transformation
use change of variables to simplify and
evaluate multiple integrals.

