Teacher: Core Multi Variable

Calculus with Advanced Topics Year: 2017-18

Course: Multi Variable Calculus

with Advanced Topics Month: All Months

S Vectors and Geometry of Space

е	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources S	Standards
р	How do patterns and functions help us describe data and physical phenomena and solve a variety of problems?	Conic Sections	Graph points in a plane in three dimensions	conic sections				
t	How are quantitative relationships represented by numbers?	Vectors	use the distance formula	parametrization				
е	How do geometric relationships and measurements help us to solve problems and make sense of the world?	Parmetrized Curves	describe and sketch regions involving spheres	polar coordinates				
m		Polar Coodinates	describe vectors algebraically, graphically, and verbally.	vector functions				
b			compute with vectors using properties of vectors and vector operations.	scalar				
е			solve problems involving force and velocity using components of vectors.	magnitude				
r			compute the dot product of vectors. use dot product to determine the angle between two vectors.	dot product cross product				
				orthogonal vectors cylindrical coordinates				

O Vectors and Geometry of Space

С								
	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons R	esources :	Standards
t	How do patterns and functions	Conic Sections	find scalar and vector projections.	conic sections				
	help us describe data and							
	physical phenomena and solve a							
	variety of problems?							
0	How are quantitative	Vectors	compute and use cross products.	parametrization				
	relationships represented by							
	numbers?							

	and measurements help us to solve problems and make sense of the world?	Parmetrized Curves	compute and use scalar and vector triple products.	polar coordinates
•	e	Polar Coodinates	compute and use vector and parametric equations of lines.	vector functions
	r		compute and use equations of planes.	scalar
			sketch graphs and describe properties of	magnitude
			functions in two variables.	
			work with quadratic susrfaces.	dot product
			convert from one coordinate system to another.	cross product
			graph functions given in spherical and cylindrical coordinates.	orthogonal vectors
				cylindrical coordinates

N Vector Functions

0						
Essentia	Questions Content	Knowledge and Skills	Vocabulary	Assessments	Lessons Resources	Standards
v	Vector Function	sketch and recognize graphs of space curves	Component Test for			
		given parametrically.	Continuity			
e	Derivative of a Vector	or find the domain, range, and limits of vector	Velocity Vector			
	Function	functions.				
m	Integral of a Vector	compute the derivatives of vector functions.	Acceleration Vector			
	Fuction					
b	Curvature	determine tangent vectors of space curves	Projectile Motion			
e	Parametric Surface	computing the arc length of space curves	Arc length			
r		parameterize curves with repect to arc	Curvature			
		length.				
			Torsion			
			Tangent Components			
			Normal Components			
			Planetary Motion			
D. Vactor E	unctions					

D Vector Functions

е	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons R	Resources S	Standards
С		Vector Functions	compute the curvature of a curve.	Component Test for Continuity				
е		Derivative of a Vector Function	compute the normal and binormal vectors and the associated planes of a curve.	Velocity Vector				
m		Integral of a Vector Function	compute the velocity and acceleration of a particle.	Acceleration Vector				

b	Parametric Surfaces	solve problems involving motion, acceleration, or force.	Projectile Motion	
e		graph and recognize parametric surfaces. find parametric representations of surfaces.	Arc length Curvature	
r		minu parametric representations of surfaces.		
			Torsion Tangent Components	
			Normal Components	
J Partail Derivatives			Planetary Motion	
a				
Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments Lessons Resources Standards
n	Partial Derivative	find domain and range of functions of two variables.	Bounded/Unbounded	
u	Directional Derivative	decribe the level surfaces of functions with three variables.	Contour Lines	
a	Gradient Vector	determine if a function $f(x,y)$ has a limit at (a,b) .	Limits and Continuity	
r	Lagrange Multiplier	determine the points of continuity of a	Second Order Partial	
		function of f(x,y).	Derivatives	
У		compute and interpret partial derivatives.	Linearization	
		use Clairault's Theorem to compute higher	Differentials	
		partial derivatives.		
		verify whether or not a given function satisfies a partial differentiation equation.	Chain Rule	
		compute the tangent plane to a surface given by a function of two variables.	Implicit Differentiation	
		determine if a function is differentiable.	Directional Derivatives	
		use linearization to approximatthe values of a function.	Gradient	
			Tangent Planes	
			Saddle Points	
			Lagrange Multipliers	
F Partial Derivatives				
e Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments Lessons Resources Standards
b	Partial Derivatives	compute tangent planes to parametric surfaces.	Bounded/Unbounded	
r	Directional	compute derivatives using the chain rule.	Contour Lines	
	Derivatives			

u	Gradient Vector	use implicit differentiation to compute derivatives.	Limits and Continuity
a	Lagrange Multiplier	compute directional derivatives.	Second Order Partial Derivatives
r		find and apply the gradient vector.	Linearization
У		find tangent planes and normal lines to level surfaces.	Chain Rule
		find local maximum and minimum values.	Implicit Differentiation
		compute the absolute minimum and maximum values of a function.	Directional Derivatives
		determine the saddle points of a function.	Gradient
		use the method of Lagrange multipliers to determine the extreme values of a function subject to constraints.	Tangent Planes
			Saddle Points
			Lagrange Multipliers
M Multiple Integrals			

a							
	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons Resources	Standards
r			use a double Riemann Sum to approximate				
			integrals.				
С			evaluate double integrals by computing				
			volumes.				
h			evaluate double integrals over general				
			regions.				
			evaluate double integrals over polar regions.				
			use double integrals to compute mass.				
			compute moments of inertia and centers of				
			mass.				
Α	Multiple Integrals						

р								
	Essential Questions	Content	Knowledge and Skills	Vocabulary	Assessments	Lessons	Resources S	Standards
r			Compute Triple Integrals.					
i			apply Fubini's theorem.					
- 1			apply triple integrals to problems of volume,					
			density, and mass.					
			compute triple integrals using cylindrical					
			coordinates.					
			compute triple integrals using spherical					
			coordinates.					

find the image of a set under a transformation. compute the Jacobian of a transformation. use change of variables to simplify and evaluate multiple integrals.