Algebra II - Unit 5: Powers Roots and Radicals | Algebia II – Offic 5. Fowers, Noots, and Nadicals | | | | | | | |---|---|--|--|--|--|--| | Phoenixville Area School District Stage 1 Desired Results | | | | | | | | | | | | | | | | CC.2.1.HS.F.1 Apply | TRANSFER GOALS | | | | | | | and extend the | Students will be able to independently use their learning to | | | | | | | properties of exponents to solve problems with • Number Sense: Develop a sound foundation to demonstrate the value of numbers by | | | | | | | | to solve problems with rational exponents. | their various representations, relationships, and patterns. | | | | | | | rational exponents. | | | | | | | | CC.2.1.HS.F.2 Apply | Fluency: Demonstrate automatic recall of addition, subtraction, multiplication, and division of | | | | | | | properties of rational and rational numbers. | | | | | | | | irrational numbers to | | | | | | | | solve real world or mathematical problems. | Problem-Solving: Persistently apply various problem-solving strategies and organized approaches | | | | | | | mathematical problems. | to accurately understand and solve problems and provide evidence to support response. | | | | | | | CC.2.1.HS.F.7 Apply | Reasoning: Demonstrate mathematical resilience and conceptual understanding through the use | | | | | | | concepts of complex | | | | | | | | numbers in polynomial | of vocabulary, written expression, graphical representation, and alternate strategies. | | | | | | | identities and quadratic | | | | | | | | equations to solve problems. | Meaning September 1997 | | | | | | | problems. | UNDERSTANDINGS | ESSENTIAL QUESTIONS | | | | | | CC.2.2.HS.D.8 Apply | Students will understand that • Mathematical ideas interconnect and build on one | Students will keep considering | | | | | | inverse operations to | another to produce a coherent whole. | What is the question asking? How do I get
there? | | | | | | solve equations or | Various mathematical representations are useful for | What tools should I use here to be most efficient | | | | | | formulas for a given | problem solving and communicating a solution. | and effective? | | | | | | variable. | Tools and strategies are strategically selected and | What counts as an adequate solution? Does my | | | | | CC.2.2.HS.C.2 Graph and analyze functions and use their properties to make connections between the different representations. - Tools and strategies are strategically selected and used to solve particular applications. - Mathematical ideas must be communicated clearly in written, visual, or oral form. - Algebraic rules and properties determine how expressions are simplified and how equations are solved. - Patterns and functions can be generalized and represented using; verbal models, tables, equations, and graphs. - get - st efficient - What counts as an adequate solution? Does my answer make sense? - What does this quantity/number/ expression/value mean? What are the ways to represent it? Is there a best way? - How do I create an equation/ representation that describes the problem situation? How do I know if I got it right? Is one representation more appropriate than another? | 000001100111 | | _ | | | | | |--|---|---|--|--|--|--| | CC.2.2.HS.C.4 Interpret | | | | | | | | the effects | Knowledge and Skills Acquisition | | | | | | | transformations have on functions and find the | KNOWLEDGE | SKILLS | | | | | | | Students will know | Students will be skilled at | | | | | | inverses of functions. CC.2.2.HS.C.6 Interpret functions in terms of the situations they model. | How to simplify, add, subtract, multiply, and divide expressions using rational exponent properties How to solve exponent and radical equations How to add, subtract, multiply, divide, and compose functions and find these functions' domains and ranges How to find, graph, transform, and analyze inverse functions VOCABULARY Rational Exponent Nth Root/Index Composition Function Inverse Function | Simplifying, adding, subtracting, multiplying, and dividing expressions involving rational exponents through multiple choice and open response problems Solving equations involving exponents and nth roots and explaining solutions in terms of the problem's context through open response problems Finding a function's domain and range and adding, subtracting, multiplying, dividing, and composing functions through open response problems Finding, graphing, transforming, and analyzing inverse functions through matching, open response, and constructed response problems | | | | | | Stage 2 – Evidence | | | | | | |---|--|---|------------------------------------|--|--| | Code
A/M/T | Evaluative
Criteria | Assessment Evidence | | | | | A/M/T Acquisition Meaning Making Transfer | What criteria will be used in each assessment to evaluate attainment of the desired results? | PERFORMANCE TASK(S) Students will demonstrate understanding (meaning making and transfer) through complex performance by [Performance Assessment Title] [Performance Assessment Description] • Goal: Your task is to • Role/Audience: You are a • Situation/Product: You will • Success Criteria: Your [product] must include | Differentiation
Considerations: | | | | A/M/T Acquisition Meaning Making Transfer | What criteria will be used in each assessment to evaluate attainment of the desired results? | OTHER EVIDENCE [Unit Test] • [Multiple Choice] • [True/False] • [Matching] • [Constructed Response Prompts:] | Differentiation
Considerations: | | |