Phoenixville Area School District Understanding by Design (UbD) Science Unit Plan

Grade Level &/or HS Subject: BIOLOGY

Unit Name: GENETIC INHERITANCE AND VARIATION

Stage 1 Desired Results			
Overarching	Transfer		
NGSS & PA	Students will be able to independently use their learning to		
Standards:			
HS-LS3-1	• ask questions and/or define problems		
115-1155-1	-S3-1 • analyze and interpret data using computational thinking <i>Meaning-Making</i>		
HS-LS3-3	Students will understand that	ESSENTIAL QUESTIONS	
	 there are relationships about the role of DNA and chromosomes in coding the instructions for 	Students will keep	
	characteristic traits passed from parents to offspring.	considering	
		How are the characteristics of	
	• there are variations and distribution of expressed traits in a population.	one generation related to the	
		previous generation?	
Which		• Why/how do individuals of	
branch(es) of		the same species vary in how	
science apply:		they look, function, and	
		behave?	
BIOLOGY	Knowledge and Skills Acquisition		
	UNDERSTANDINGS	Students will be skilled at	
	Students will know	• Asking questions that arise	
	• all cells contain genetic information in the form of DNA molecules. Genes are regions in the	from examining models or a	
	DNA that contain the instructions that code for the formation of proteins.	theory to clarify relationships.	
	• each chromosome consists of a single very long DNA molecule, and each gene on the	• Applying concepts of	
	chromosome is a particular segment of that DNA. The instructions for forming species'	statistics and probability	
	characteristics are carried in DNA. Allcells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes	(including determining function fits to data, slope,	
	for a protein; some segments of DNA are involved in regulatory or structural functions, and	intercept, and correlation	
	some have no as-yet known function.	coefficient for linear fits) to	
	 environmental factors also affect expression of traits, and hence affect the probability of 	scientific and engineering	
	occurrences of traits in a population. Thus, the variation and distribution of traits observed	questions and problems, using	
	depends on both genetic and environmental factors.	digital tools when feasible.	
	• Describe and/or predict observed patterns of inheritance (i.e., dominant, recessive, co-		
	dominance, incomplete dominance, sex-linked, polygenic, and multiple alleles).*		
	• Explain how genetic engineering has impacted the fields of medicine, forensics, and		

	 agriculture (e.g., selective breeding, gene splicing, cloning, genetically modified organisms, gene therapy).* Explain the functional relationships among DNA, genes, alleles, and chromosomes and their roles in inheritance.* 	
	KEY VOCABULARY Alleles, Cloning, Co-dominance, Dominant, F1 Generation, F2 Generation, Gene Splicing, Gen Therapy, Genes, Genetically Modified Organisms, Genotype, Heterozygous, Homozygous, Hybrid, Incomplete dominance, Karyotype, Multiple alleles, P Generation, Phenotype, Polygenic, Purebred, Recessive, Sex-Linked Traits, Trait	e
	Stage 2 – Evidence	
Evaluative Criteria	Assessment Evidence	
What criteria will be used in each assessment to evaluate attainment of the desired results?	Genetic Drift Modeling Lab	Differentiation Considerations: • Grouping of students • Split Screen Activities • Scaffolding of Information
What criteria will be used in each assessment to evaluate attainment of the desired results?	Genetic Engineering Project – OPTIONAL	Differentiation Considerations: • Grouping of students • Split Screen Activities • Scaffolding of Information