Phoenixville Area School District Understanding by Design (UbD) Science Template

Grade Level &/or HS Subject: Physics Unit Name: Energy Part 2

Stage 1 Desired Results				
Overarching	Transfer			
NGSS & PA	Students will be able to independently use their learning to			
Standards:				
LIC DC2 1	Ask questions and define problems			
HS-PS3-1	Develop and use models			
Create a	Plan and carry out experiments			
computational	Analyze and interpret data using computational thinking			
model to	Obtain, evaluate, and communicate information (supported by evidence) Construct explanations and design solutions			
calculate the	Construct explanations and design solutions			
change in the	(Choose the appropriate content-specific transfer goals)			
energy of one	Meaning-Making			
component in a	Students will understand that	ESSENTIAL QUESTIONS		
system when	Students witt understand that	Students will keep		
the change in	A computational model can be used to calculate the change in the energy of one component in a	considering		
energy of the	system when the change in energy of the other component(s) and energy flows in and out of the	constacting		
other	system are known	How is energy transferred and		
component(s)		conserved?		
and energy	They can develop and use models to illustrate that energy at the macroscopic scale can be			
flows in and	accounted for as a combination of energy associated with the motions of particles (objects) and	What is energy?		
out of the	energy associated with the relative positions of particles (objects)			
system are	Devises that we also within aircan according to the according of an array into an athen forms of			
known.	Devices that work within given constraints to convert one form of energy into another form of energy can be designed, built and refined.			
HS-PS3-2	energy can be designed, built and refined.			
113 1 55 2	Energy is a quantitative property of a system that depends on the motion and interactions of			
Develop and	matter and radiation within that system.			
use models to	·			
illustrate that	A system's total energy is conserved, even as, within the system, energy is continually			
energy at the	transferred from one object to another and between its various possible forms.			
macroscopic	Energy cannot be created or destroyed, but it can be transported from one place to another and			
scale can be	transferred between systems.			
accounted for	dunistried between systems.			

as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects) **** This will be limited to qualitative understanding for electric and magnetic forces/energy

HS-PS3-3

Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.*

HS-ESS2-2

Analyze geoscience

At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.

Although energy cannot be destroyed, it can be converted to less useful forms — for example, to thermal energy in the surrounding environment

Knowledge and Skills Acquisition

UNDERSTANDINGS

Students will know...

Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms.

Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. (Law of Conservation of Energy)

Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. ($\mathbf{Work} = \mathbf{F}^*\mathbf{x}$ and \mathbf{Work} -Energy Theorem)

Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g., relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior.

At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.

- Kinetic Energy = 0.5mv 2
- Gravitational Potential Energy near Earth's Surface = mgh

Although energy cannot be destroyed, it can be converted to less useful forms — for example, to thermal energy in the surrounding environment

Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them.

For potential energies, 0 J is used as a reference.

Students will be skilled at...

Design, evaluate, and/or refine a solution to a complex realworld problem based on scientific knowledge, studentgenerated sources of evidence, prioritized criteria, and tradeoff considerations.

Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.

Create a computational model or simulation of a phenomenon, designed device, process, or system.

Critically read scientific literature adapted for classroom use to determine the central ideas or conclusions and/or to obtain scientific and/or technical information to summarize complex evidence, concepts, processes, or information presented in a text

data to make	For Ug that often means the lowest point in the problem.	by paraphrasing them in		
the claim that	 For the electric and magnetic energy, that usually means infinitely far away. 	simpler but still accurate terms		
one change to	To the electric and magnetic energy, that assumy means minimizery far away.	1		
Earth's surface	Power is energy change/time			
can create				
feedbacks that				
cause changes	KEY VOCABULARY			
to other Earth				
systems.	Enguerr			
	Energy Kinetic Energy			
	Potential Energy			
Which	Gravitational Potential Energy			
branch(es) of	Thermal Energy			
science apply:	Heat			
DG EGG	Power			
PS ESS	Simple Machines			
Stage 2 – Evidence				

Evaluative Criteria	Assessment Evidence	
	PERFORMANCE TASK(S):	Differentiation Considerations:
Successful identification of energy types; accurate application of conservation of energy; attempt to balance cost v performance; ID of limitations of model and	Rollercoaster Calculator Part 2 Goal: Students will build a rollercoaster calculator that will attempt to maximize speed at the bottom while minimizing cost. Every feature of the coaster will have a cost associated with it. The primary features will be coefficient of friction, mass, height, angle, and drag coefficient (aerodynamics). Role: Rollercoaster Designers Audience: Amusement Park Execs Situation: Pairs of students Product/Purpose: Use a spreadsheet to design and optimize the coaster's speed/cost. They will make a report detailing why theirs is the best solution. Standards: See left	Spreadsheets recommended, but those with experience can use other programming languages; students can choose nature of report (oral, written).

explanation of model.		
Accuracy of answers and explanations; lab/inquiry process skills	 OTHER EVIDENCE: HW – these will consist of a range of questioning goals, from basic things like vocab understanding to conceptual understanding to application Lab – Hotwheels energy loss lab Quizzes – MC or FR where work is required; similar to HW, could be fact recall, conceptual understanding or application being assessed. Test – 1 for the unit, will contain a mix of recall and application focused on the understandings and knowledge from Stage 1 	 Notes allowed on some assessments Partial credit + test corrections
	(What evidence will be collected to determine whether Stage 1 goals were achieved?)	