Phoenixville Area School District Understanding by Design (UbD) Science Template Grade Level &/or HS Subject: Environmental Science Unit Name: Land Use | Stage 1 Desired Results | | | | | |-------------------------|--|--|--|--| | Overarching | Transfer | | | | | NGSS & PA | Students will be able to independently use their learning to | | | | | Standards: | | | | | | HG EGG2 2 | Ask questions and/or define problems | | | | | HS-ESS3-3 | Develop and/or use models | | | | | Create a | Plan and/or carry out investigations | | | | | computational | Analyze and interpret data using computational thinking | | | | | simulation to | Obtain, evaluate, and communicate information (supported by evidence) | | | | | illustrate the | Construct explanations and design solutions | | | | | relationship | Meaning-Making | | | | | among the | Students will understand that | ESSENTIAL QUESTIONS | | | | management of | | Students will keep | | | | natural | Examples of factors that affect the management of natural resources include costs of resource | considering | | | | resources, the | extraction and waste management, per-capita consumption, and the development of new | | | | | sustainability | technologies. Examples of factors that affect human sustainability include agricultural | How do humans change the | | | | of human | efficiency, levels of conservation, and urban planning. | planet? | | | | populations, | | | | | | and | Examples of data on the impacts of human activities could include the quantities and types of | | | | | biodiversity | pollutants released, changes to biomass and species diversity, or areal changes in land surface | | | | | HC ECC2 4 | use (such as for urban development, agriculture and livestock, or surface mining). Examples for | | | | | HS-ESS3-4 | limiting future impact could range from local efforts (such as reducing, reusing, and recycling | | | | | Evaluate or | resources) to large-scale geoengineering design solutions (such as altering global temperatures | | | | | refine a | by making large changes to the atmosphere or ocean. | | | | | technological | Knowledge and Skills Acquisition | | | | | solution that | UNDERSTANDINGS | Students will be skilled at | | | | reduces | Students will know | | | | | impacts of | | Cite specific textual | | | | human | ESS3.C: Human Impacts on Earth Systems | evidence to support | | | | activities on | -The sustainability of human societies and the biodiversity that supports them requires | analysis of science and | | | | natural | responsible management of natural resources. | technical texts, | | | | systems. | -Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation. | attending to important distinctions the author | | | | | | | | | | Which | | | |----------------|--|--| | branch(es) of | | | | science apply: | | | ## LS PS E&SS ## ETS1.B: Developing Possible Solutions -When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. #### KEY VOCABULARY # agriculture cropland, rangeland, traditional agriculture, monocultures, sustainable agriculture practices, soil, soil profile, topsoil, slash-and-burn, irrigation, compost, land degradation, erosion, desertification, overgrazing, Green Revolution ### forestry deforestation, maximum sustainable yield, clearcutting, island biogeography theory ## urban planning urbanization, suburbs, new urbanism, mass transit, greenways, greenbelts, green buildings, noise pollution, light pollution - makes and to any gaps or inconsistencies in the account. - Evaluate hypothesis, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. - Reason abstractly and quantitatively. - Model with mathematics. - Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. - Define appropriate quantities for the purpose of descriptive modeling. - Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. | Stage 2 – Evidence | | | | | |------------------------|---|---------------------------------|--|--| | Evaluative
Criteria | Assessment Evidence | | | | | | PERFORMANCE TASK(S): HS-ESS3-3 • Students create a computational simulation (using a spreadsheet or a provided multiparameter program) that contains representations of the relevant components, including: • A natural resource in a given ecosystem • The sustainability of human populations in a given ecosystem • Biodiversity in a given ecosystem • The effect of technology on a given ecosystem • Students describe* simplified realistic (corresponding to real-world data) relationships between simulation variables to indicate an understanding of the | Differentiation Considerations: | | | | | factors (e.g., costs, availability of technologies) that affect the management of natural resources, human sustainability, and biodiversity. (For example, a relationship could be described that the amount of a natural resource does not affect the sustainability of human populations in a given ecosystem without appropriate technology that makes use of the resource; or a relationship could be described that if a given ecosystem is not able to sustain biodiversity, its ability to sustain a human population is also small.) • Students use scientific information to generate a number of possible refinements to a given technological solution. Students: • Describe the system being impacted and how the human activity is affecting that system | | | | | | Identify the scientific knowledge and reasoning on which the solution is based Describe how the technological solution that reduces human impacts on natural systems Describe that the solution being refined comes from scientists and engineers in the real world who develop technologies to solve problems of environmental degradation Students describe and quantify: Criteria and constraints for the solutions to the problem The tradeoffs in the solution, considering priorities and other kinds of research-driven tradeoffs in explaining why this particular solution is or is not needed | | | | | | In their evaluation, students describe how refinement will improve the solution to increase benefits and/or decrease costs or risks to people and the environment. Students evaluate the proposed refinements for: Their effects on the overall stability of and changes in natural systems Cost, safety, aesthetics, reliability, as well as cultural and environmental impacts | | |-----------------|---|---------------------------------| | Question | OTHER EVIDENCE: | Differentiation Considerations: | | Accuracy | | | | Project Rubrics | Optional | | | | • Project | | | | Design a Smart Growth City | | | | • Labs | | | | Carbon Tree Sequester Lab | | | | Ecological Footprint Lab | | | | • Unit Test | | | | Agricultural and Forestry Test | | | | Urban Planning Test | | | | | |